Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Sci Rep ; 14(1): 3793, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360900

RESUMO

The orf63 gene resides in a region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed during infection. In lambda phage and Shiga toxin (Stx) producing phages found in enterohemorrhagic Escherichia coli (EHEC) associated with food poisoning, Orf63 expression reduces the host survival and hastens the period between infection and lysis thereby giving it pro-lytic qualities. The NMR structure of dimeric Orf63 reveals a fold consisting of two helices and one strand that all make extensive intermolecular contacts. Structure-based data mining failed to identify any Orf63 homolog beyond the family of temperate bacteriophages. A machine learning approach was used to design an amphipathic helical ligand that bound a hydrophobic cleft on Orf63 with micromolar affinity. This approach may open a new path towards designing therapeutics that antagonize the contributions of Stx phages in EHEC outbreaks.


Assuntos
Bacteriófago lambda , Escherichia coli Êntero-Hemorrágica , Proteínas Virais , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/virologia , Toxina Shiga/genética , Proteínas Virais/metabolismo
2.
Sci Rep ; 14(1): 2685, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302537

RESUMO

The ea22 gene resides in a relatively uncharacterized region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed upon infection. In lambda and Shiga toxin-producing phages found in enterohemorrhagic E. coli (EHEC) associated with food poisoning, Ea22 favors a lysogenic over lytic developmental state. The Ea22 protein may be considered in terms of three domains: a short amino-terminal domain, a coiled-coiled domain, and a carboxy-terminal domain (CTD). While the full-length protein is tetrameric, the CTD is dimeric when expressed individually. Here, we report the NMR solution structure of the Ea22 CTD that is described by a mixed alpha-beta fold with a dimer interface reinforced by salt bridges. A conserved mobile loop may serve as a ligand for an unknown host protein that works with Ea22 to promote bacterial survival and the formation of new lysogens. From sequence and structural comparisons, the CTD distinguishes lambda Ea22 from homologs encoded by Shiga toxin-producing bacteriophages.


Assuntos
Bacteriófagos , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Humanos , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Lisogenia/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Toxina Shiga/genética , Infecções por Escherichia coli/microbiologia
3.
J Mol Biol ; 436(4): 168423, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185325

RESUMO

In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fMet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entrance channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.


Assuntos
Bacteriófago lambda , Escherichia coli , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro , Proteínas Repressoras , Subunidades Ribossômicas Maiores de Bactérias , Proteínas Virais Reguladoras e Acessórias , Escherichia coli/genética , Escherichia coli/virologia , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Virais Reguladoras e Acessórias/genética
4.
Structure ; 32(1): 35-46.e3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37918400

RESUMO

Bacteriophage lambda has a double-stranded DNA genome and a long, flexible, non-contractile tail encoded by a contiguous block of 11 genes downstream of the head genes. The tail allows host recognition and delivery of viral DNA from the head shell to the cytoplasm of the infected cell. Here, we present a high-resolution structure of the tail complex of bacteriophage lambda determined by cryoelectron microscopy. Most component proteins of the lambda tail were determined at the atomic scale. The structure sheds light on the molecular organization of the extensively studied tail of bacteriophage lambda.


Assuntos
Bacteriófago lambda , Proteínas Virais , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Microscopia Crioeletrônica , Proteínas Virais/genética , Proteínas Virais/química , DNA Viral/genética , Proteínas da Cauda Viral/química
5.
Structure ; 31(8): 893-894, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541191

RESUMO

The transcription activator of the λ phage, CII, determines whether the phage will undergo the lytic or the lysogenic pathway. In a report by Zhao et al. in this issue of Structure, the cryo-EM structure of the λCII-dependent transcription activation complex reveals how λCII activates the PRE promoter to turn on the lysogenic pathway.


Assuntos
Fatores de Transcrição , Proteínas Virais , Proteínas Virais/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lisogenia , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Ativação Transcricional , Transcrição Gênica
6.
Structure ; 31(8): 968-974.e3, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269829

RESUMO

The CII protein of bacteriophage λ activates transcription from the phage promoters PRE, PI, and PAQ by binding to two direct repeats that straddle the promoter -35 element. Although genetic, biochemical, and structural studies have elucidated many aspects of λCII-mediated transcription activation, no precise structure of the transcription machinery in the process is available. Here, we report a 3.1-Å cryo-electron microscopy (cryo-EM) structure of an intact λCII-dependent transcription activation complex (TAC-λCII), which comprises λCII, E. coli RNAP-σ70 holoenzyme, and the phage promoter PRE. The structure reveals the interactions between λCII and the direct repeats responsible for promoter specificity and the interactions between λCII and RNAP α subunit C-terminal domain responsible for transcription activation. We also determined a 3.4-Å cryo-EM structure of an RNAP-promoter open complex (RPo-PRE) from the same dataset. Structural comparison between TAC-λCII and RPo-PRE provides new insights into λCII-dependent transcription activation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Ativação Transcricional , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Transcrição Gênica
7.
Science ; 380(6643): 410-415, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104586

RESUMO

Type VI CRISPR-Cas systems use RNA-guided ribonuclease (RNase) Cas13 to defend bacteria against viruses, and some of these systems encode putative membrane proteins that have unclear roles in Cas13-mediated defense. We show that Csx28, of type VI-B2 systems, is a transmembrane protein that assists to slow cellular metabolism upon viral infection, increasing antiviral defense. High-resolution cryo-electron microscopy reveals that Csx28 forms an octameric pore-like structure. These Csx28 pores localize to the inner membrane in vivo. Csx28's antiviral activity in vivo requires sequence-specific cleavage of viral messenger RNAs by Cas13b, which subsequently results in membrane depolarization, slowed metabolism, and inhibition of sustained viral infection. Our work suggests a mechanism by which Csx28 acts as a downstream, Cas13b-dependent effector protein that uses membrane perturbation as an antiviral defense strategy.


Assuntos
Proteínas de Bactérias , Bacteriófagos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Prevotella , Clivagem do RNA , RNA Viral , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Bacteriófagos/metabolismo , Bacteriófago lambda/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Prevotella/enzimologia , Prevotella/virologia
8.
Biochim Biophys Acta Biomembr ; 1865(2): 184083, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370910

RESUMO

The S protein from bacteriophage lambda is a three-helix transmembrane protein produced by the prophage which accumulates in the host membrane during late gene expression. It is responsible for the first step in lysing the host cell at the end of the viral life cycle by multimerizing together to form large pores which permeabilize the host membrane to allow the escape of virions. Several previous studies have established a model for the assembly of holin into functional holes and the manner in which they pack together, but it is still not fully understood how the very rapid transition from monomer or dimer to multimeric pore occurs with such precise timing once the requisite threshold is reached. Here, site-directed spin labeling with a nitroxide label at introduced cysteine residues is used to corroborate existing topological data from a crosslinking study of the multimerized holin by EPR spectroscopy. CW-EPR spectral lineshape analysis and power saturation data are consistent with a three-helix topology with an unstructured C-terminal domain, as well as at least one interface on transmembrane domain 1 which is exposed to the lumen of the hole, and a highly constrained steric environment suggestive of a tight helical packing interface at transmembrane domain 2.


Assuntos
Bacteriófago lambda , Cisteína , Bacteriófago lambda/genética , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cisteína/metabolismo , Proteínas de Membrana/metabolismo , Marcadores de Spin
9.
ACS Synth Biol ; 11(8): 2610-2622, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35798328

RESUMO

Efficient production of biochemicals and proteins in cell factories frequently benefits from a two-stage bioprocess in which growth and production phases are decoupled. Here, we describe a novel growth switch based on the permanent removal of the origin of replication (oriC) from the Escherichia coli chromosome. Without oriC, cells cannot initiate a new round of replication, and they stop growing while their metabolism remains active. Our system relies on a serine recombinase from bacteriophage phiC31 whose expression is controlled by the temperature-sensitive cI857 repressor from phage lambda. The reporter protein expression in switched cells continues after cessation of growth, leading to protein levels up to 5 times higher compared to nonswitching cells. Switching induces a unique physiological state that is different from both normal exponential and stationary phases. The switched cells remain in this state even when not growing, retain their protein synthesis capacity, and do not induce proteins associated with the stationary phase. Our switcher technology is potentially useful for a range of products and applicable in many bacterial species for decoupling growth and production.


Assuntos
Replicação do DNA , Origem de Replicação , Proteínas de Bactérias/genética , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA/genética , DNA Bacteriano/genética , Escherichia coli/metabolismo , Origem de Replicação/genética
10.
Phys Rev Lett ; 128(4): 048101, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148123

RESUMO

Stochastic protein accumulation up to some concentration threshold sets the timing of many cellular physiological processes. Here we obtain the exact distribution of first threshold crossing times of protein concentration, in either Laplace or time domain, and its associated cumulants: mean, variance, and skewness. The distribution is asymmetric, and its skewness nonmonotonically varies with the threshold. We study lysis times of E. coli cells for holin gene mutants of bacteriophage-λ and find a good match with theory. Mutants requiring higher holin thresholds show more skewed lysis time distributions as predicted. The theory also predicts a linear relationship between infection delay time and host doubling time for lytic viruses, that has recently been experimentally observed.


Assuntos
Escherichia coli , Modelos Biológicos , Proteínas Virais , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas Virais/metabolismo
11.
Structure ; 30(4): 637-645.e3, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35026161

RESUMO

Bacteriophage lambda is an excellent model system for studying capsid assembly of double-stranded DNA (dsDNA) bacteriophages, some dsDNA archaeal viruses, and herpesviruses. HK97 fold coat proteins initially assemble into a precursor capsid (procapsid) and subsequent genome packaging triggers morphological expansion of the shell. An auxiliary protein is required to stabilize the expanded capsid structure. To investigate the capsid maturation mechanism, we determined the cryo-electron microscopy structures of the bacteriophage lambda procapsid and mature capsid at 3.88 Å and 3.76 Å resolution, respectively. Besides primarily rigid body movements of common features of the major capsid protein gpE, large-scale structural rearrangements of other domains occur simultaneously. Assembly of intercapsomers within the procapsid is facilitated by layer-stacking effects at 3-fold vertices. Upon conformational expansion of the capsid shell, the missing top layer is fulfilled by cementing the gpD protein against the internal pressure of DNA packaging. Our structures illuminate the assembly mechanisms of dsDNA viruses.


Assuntos
Bacteriófago lambda , Capsídeo , Bacteriófago lambda/química , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Capsídeo/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Empacotamento do DNA , Montagem de Vírus/genética
12.
Biotechnol Lett ; 44(2): 253-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792701

RESUMO

Functional characterization of metagenomic DNA often involves expressing heterologous DNA in genetically tractable microorganisms such as Escherichia coli. Functional expression of heterologous genes can suffer from limitations due to the lack of recognition of foreign promoters or presence of intrinsic terminators on foreign DNA between a vector-based promoter and the transcription start site. Anti-terminator proteins are a possible solution to overcome this limitation. When bacteriophage lambda infects E. coli, it relies on the host transcription machinery to transcribe and express phage DNA. Lambda anti-terminator protein Q (λQ) regulates the expression of late-genes of phage lambda. E. coli RNA polymerase recognizes the PR' promoter on the lambda genome and forms a complex with λQ, to overcome the terminator tR'. Here we show the use of λQ to efficiently transcribe a capsular polysaccharide cluster, cps3, from Lactobacillus plantarum containing intrinsic terminators in Escherichia coli. In addition, we expand the use of anti-terminator λQ in Pseudomonas putida. The results show ~ fivefold higher expression of a fluorescent reporter located ~ 12.5kbp downstream from the promoter, when the transcription is driven by PR' promoter in presence of λQ compared to a lac promoter. These results suggest that λQ could be used in metabolic engineering to enhance expression of heterologous DNA.


Assuntos
Bacteriófago lambda , Escherichia coli , Pseudomonas putida , Proteínas de Bactérias , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transcrição Gênica
13.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638896

RESUMO

Human cytomegalovirus (HCMV) continues to be a major cause of morbidity in transplant patients and newborns. However, the functions of many of the more than 282 genes encoded in the HCMV genome remain unknown. The development of bacterial artificial chromosome (BAC) technology contributes to the genetic manipulation of several organisms including HCMV. The maintenance of the HCMV BAC in E. coli cells permits the rapid generation of recombinant viral genomes that can be used to produce viral progeny in cell cultures for the study of gene function. We optimized the Lambda-Red Recombination system to construct HCMV gene deletion mutants rapidly in the complete set of tested genes. This method constitutes a useful tool that allows for the quick generation of a high number of gene deletion mutants, allowing for the analysis of the whole genome to improve our understanding of HCMV gene function. This may also facilitate the development of novel vaccines and therapeutics.


Assuntos
Bacteriófago lambda/genética , Cromossomos Artificiais Bacterianos/genética , Citomegalovirus/genética , Escherichia coli/genética , Deleção de Genes , Recombinação Genética , Bacteriófago lambda/metabolismo , Linhagem Celular , Clonagem Molecular/métodos , Infecções por Citomegalovirus/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Mutação , Plasmídeos/genética , Reprodutibilidade dos Testes
14.
J Membr Biol ; 254(4): 397-407, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34189599

RESUMO

During the final step of the bacteriophage infection cycle, the cytoplasmic membrane of host cells is disrupted by small membrane proteins called holins. The function of holins in cell lysis is carried out by forming a highly ordered structure called lethal lesion, in which the accumulation of holins in the cytoplasmic membrane leads to the sudden opening of a hole in the middle of this oligomer. Previous studies showed that dimerization of holins is a necessary step to induce their higher order assembly. However, the molecular mechanism underlying the holin-mediated lesion formation is not well understood. In order to elucidate the functions of holin, we first computationally constructed a structural model for our testing system: the holin S105 from bacteriophage lambda. All atom molecular dynamic simulations were further applied to refine its structure and study its dynamics as well as interaction in lipid bilayer. Additional simulations on association between two holins provide supportive evidence to the argument that the C-terminal region of holin plays a critical role in regulating the dimerization. In detail, we found that the adhesion of specific nonpolar residues in transmembrane domain 3 (TMD3) in a polar environment serves as the driven force of dimerization. Our study therefore brings insights to the design of binding interfaces between holins, which can be potentially used to modulate the dynamics of lesion formation.


Assuntos
Bacteriófago lambda , Proteínas Virais , Sequência de Aminoácidos , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Dimerização , Sequências Hélice-Volta-Hélice , Proteínas Virais/química , Proteínas Virais/metabolismo
15.
Methods Mol Biol ; 2291: 145-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704752

RESUMO

The bacteriophage Lambda (λ) "Red" recombination system has enabled the development of efficient methods for engineering bacterial chromosomes. This system has been particularly important to the field of bacterial pathogenesis, where it has advanced the study of virulence factors from Shiga toxin-producing and enteropathogenic Escherichia coli (STEC and EPEC). Transient plasmid-driven expression of Lambda Red allows homologous recombination between PCR-derived linear DNA substrates and target loci in the STEC/EPEC chromosomes. Red-associated techniques can be used to create individual gene knockouts, generate deletions of large pathogenicity islands, and make markerless allelic exchanges. This chapter describes specific strategies and procedures for performing Lambda Red-mediated genome engineering in STEC.


Assuntos
Bacteriófago lambda/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Recombinação Genética , Escherichia coli Shiga Toxigênica/metabolismo , Proteínas Virais/metabolismo , Bacteriófago lambda/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Escherichia coli Shiga Toxigênica/genética , Proteínas Virais/genética
16.
Phys Rev E ; 102(5-1): 052413, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327114

RESUMO

Protein thresholds have been shown to act as an ancient timekeeping device, such as in the time to lysis of Escherichia coli infected with bacteriophage λ. The time taken for protein levels to reach a particular threshold for the first time is defined as the first passage time (FPT) of the protein synthesis system, which is a stochastic quantity. The first few moments of the distribution of first passage times were known earlier, but an analytical expression for the full distribution was not available. In this work, we derive an analytical expression for the first passage times for a long-lived protein. This expression allows us to calculate the full distribution not only for cases of no self-regulation, but also for both positive and negative self-regulation of the threshold protein. We show that the shape of the distribution matches previous experimental data on λ-phage lysis time distributions. We also provide analytical expressions for the FPT distribution with non-zero degradation in Laplace space. Furthermore, we study the noise in the precision of the first passage times described by coefficient of variation (CV) of the distribution as a function of the protein threshold value. We show that under conditions of positive self-regulation, the CV declines monotonically with increasing protein threshold, while under conditions of linear negative self-regulation, there is an optimal protein threshold that minimizes the noise in the first passage times.


Assuntos
Modelos Biológicos , Proteínas/metabolismo , Bacteriófago lambda/metabolismo , Cinética , Processos Estocásticos
17.
ACS Synth Biol ; 9(10): 2851-2855, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32926785

RESUMO

Recent advances in cell-free systems have opened up new capabilities in synthetic biology from rapid prototyping of genetic circuits and metabolic pathways to portable diagnostics and biomanufacturing. A current bottleneck in cell-free systems, especially those employing non-E. coli bacterial species, is the required use of plasmid DNA, which can be laborious to construct, clone, and verify. Linear DNA templates offer a faster and more direct route for many cell-free applications, but they are often rapidly degraded in cell-free reactions. In this study, we evaluated GamS from λ-phage, DNA fragments containing Chi-sites, and Ku from Mycobacterium tuberculosis for their ability to protect linear DNA templates in diverse bacterial cell-free systems. We show that these nuclease inhibitors exhibit differential protective activities against endogenous exonucleases in five different cell-free lysates, highlighting their utility for diverse bacterial species. We expect these linear DNA protection strategies will accelerate high-throughput approaches in cell-free synthetic biology.


Assuntos
Bacteriófago lambda/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Exodesoxirribonuclease V/metabolismo , Exonucleases/metabolismo , Mycobacterium tuberculosis/genética , Sequência de Bases , Sistema Livre de Células , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Exodesoxirribonuclease V/antagonistas & inibidores , Exonucleases/antagonistas & inibidores , Genes Bacterianos , Plasmídeos/genética , Proteínas Recombinantes/metabolismo , Biologia Sintética/métodos , Transcrição Gênica , Proteínas Virais/metabolismo
18.
ACS Synth Biol ; 9(8): 2144-2153, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32603590

RESUMO

Cell-free systems, as part of the synthetic biology field, have become a critical platform in biological studies. However, there is a lack of research into developing a switch for a dynamical control of the transcriptional and translational process. The optogenetic tool has been widely proven as an ideal control switch for protein synthesis due to its nontoxicity and excellent time-space conversion. Hence, in this study, a blue light-regulated two-component system named YF1/FixJ was incorporated into an Escherichia coli-based cell-free system to control protein synthesis. The corresponding cell-free system successfully achieved a 5-fold dynamic protein expression by blue light repression and 3-fold dynamic expression by blue light activation. With the aim of expanding the applications of cell-free synthetic biology, the cell-free blue light-sensing system was used to perform imaging, light-controlled antibody synthesis, and light-triggered artificial cell assembly. This study can provide a guide for further research into the field of cell-free optical sensing. Moreover, it will also promote the development of cell-free synthetic biology and optogenetics through applying the cell-free optical sensing system to synthetic biology education, biopharmaceutical research, and artificial cell construction.


Assuntos
Sistema Livre de Células , Luz , Optogenética/métodos , Biossíntese de Proteínas/efeitos da radiação , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Bradyrhizobium/metabolismo , Escherichia coli/genética , Expressão Gênica/efeitos da radiação , Histidina Quinase/genética , Histidina Quinase/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Sci Rep ; 10(1): 6607, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313022

RESUMO

Antitermination (AT) is a ubiquitous principle in the regulation of bacterial transcription to suppress termination signals. In phage λ antiterminator protein Q controls the expression of the phage's late genes with loading of λQ onto the transcription elongation complex halted at a σ-dependent pause requiring a specific DNA element. The molecular basis of λQ-dependent AT and its dependence on N-utilization substance (Nus) A is so far only poorly understood. Here we used solution-state nuclear magnetic resonance spectroscopy to show that the solution structure of λQ is in agreement with the crystal structure of an N-terminally truncated variant and that the 60 residues at the N-terminus are unstructured. We also provide evidence that multidomain protein NusA interacts directly with λQ via its N-terminal domain (NTD) and the acidic repeat (AR) 2 domain, with the λQ:NusA-AR2 interaction being able to release NusA autoinhibition. The binding sites for NusA-NTD and NusA-AR2 on λQ overlap and the interactions are mutually exclusive with similar affinities, suggesting distinct roles during λQ-dependent AT, e.g. the λQ:NusA-NTD interaction might position NusA-NTD in a way to suppress termination, making NusA-NTD repositioning a general scheme in AT mechanisms.


Assuntos
Bacteriófago lambda/metabolismo , Proteínas de Escherichia coli/metabolismo , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Soluções , Fatores de Elongação da Transcrição/química , Proteínas Virais/química
20.
Nucleic Acids Res ; 48(9): 5006-5015, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255177

RESUMO

The assembly of double-stranded DNA viruses, from phages to herpesviruses, is strongly conserved. Terminase enzymes processively excise and package monomeric genomes from a concatemeric DNA substrate. The enzymes cycle between a stable maturation complex that introduces site-specific nicks into the duplex and a dynamic motor complex that rapidly translocates DNA into a procapsid shell, fueled by ATP hydrolysis. These tightly coupled reactions are catalyzed by terminase assembled into two functionally distinct nucleoprotein complexes; the maturation complex and the packaging motor complex, respectively. We describe the effects of nucleotides on the assembly of a catalytically competent maturation complex on viral DNA, their effect on maturation complex stability and their requirement for the transition to active packaging motor complex. ATP plays a major role in regulating all of these activities and may serve as a 'nucleotide switch' that mediates transitions between the two complexes during processive genome packaging. These biological processes are recapitulated in all of the dsDNA viruses that package monomeric genomes from concatemeric DNA substrates and the nucleotide switch mechanism may have broad biological implications with respect to virus assembly mechanisms.


Assuntos
Trifosfato de Adenosina/metabolismo , Genoma Viral , Montagem de Vírus , Nucleotídeos de Adenina/metabolismo , Bacteriófago lambda/enzimologia , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Capsídeo/metabolismo , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/fisiologia , Fatores Hospedeiros de Integração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...